Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Epigenome Editing in the Brain.

Epigenome editing aims for an introduction or removal of chromatin marks at a defined genomic region using artificial EpiEffectors resulting in a modulation of the activity of the targeted functional DNA elements. Rationally designed EpiEffectors consist of a targeting DNA-binding module (such as a zinc finger protein, TAL effector, or CRISPR/Cas complex) and usually, but not exclusively, a catalytic domain of a chromatin-modifying enzyme. Epigenome editing opens a completely new strategy for basic research of the central nervous system and causal treatment of psychiatric and neurological diseases, because rewriting of epigenetic information can lead to the direct and durable control of the expression of disease-associated genes. Here, we review current advances in the design of locus- and allele-specific DNA-binding modules, approaches for spatial, and temporal control of EpiEffectors and discuss some examples of existing and propose new potential therapeutic strategies based on epigenome editing for treatment of neurodegenerative and psychiatric diseases. These include the targeted silencing of disease-associated genes or activation of neuroprotective genes which may be applied in Alzheimer's and Parkinson's diseases or the control of addiction and depression. Moreover, we discuss allele-specific epigenome editing as novel therapeutic approach for imprinting disorders, Huntington's disease and Rett syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app