JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

2-Methoxylated FA Display Unusual Antibacterial Activity Towards Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (CIMRSA) and Escherichia coli.

Lipids 2017 June
The naturally occurring (6Z)-(±)-2-methoxy-6-hexadecenoic acid (1) and (6Z)-(±)-2-methoxy-6-octadecenoic acid (2) were synthesized in 7-8 steps with 38 and 13% overall yields, respectively, by using an acetylide coupling approach, which made it possible to obtain a 100% cis-stereochemistry for the double bonds. In a similar fashion, the acetylenic analogs (±)-2-methoxy-6-hexadecynoic acid (3) and (±)-2-methoxy-6-octadecynoic acid (4) were also synthesized in 6-7 steps with 48 and 16% overall yields, respectively. The antibacterial activity of acids 1-4 was determined against clinical isolates of methicillin-resistant Staphylococcus aureus (ClMRSA) and Escherichia coli. Among the series of compounds, acid 4 was the most active bactericide towards CIMRSA displaying IC50s (half maximal inhibitory concentrations) between 17 and 37 μg/mL, in sharp contrast to the 6-octadecynoic acid, which was not bactericidal at all. On the other hand, acids 1 and 3 were the only acids that displayed antibacterial activity towards E. coli, but 1 stood out as the best candidate with an IC50 of 21 μg/mL. The critical micelle concentrations (CMCs) of acids 1-4 were also determined. The C18 acids 2 and 4 displayed a five-fold lower CMC (15-20 μg/mL) than the C16 analogs 1 and 3 (70-100 μg/mL), indicating that 4 exerts its antibacterial activity in a micellar state. None of the studied acids were inhibitory towards S. aureus DNA gyrase discounting this type of enzyme inhibition as a possible antibacterial mechanism. It was concluded that the combination of α-methoxylation and C-6 unsaturation increases the bactericidal activity of the C16 and C18 FA towards the studied bacterial strains. Acids 1 and 4 stand out as viable candidates to be used against E. coli and CIMRSA, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app