Add like
Add dislike
Add to saved papers

Core Canonical Pathways Involved in Developing Human Glioblastoma Multiforme (GBM).

Glioblastoma multiforme (GBM) is the most common and aggressive type of the primary brain tumors with pathologic hallmarks of necrosis and vascular proliferation. The diagnosis of GBM is currently mostly based on histological examination of brain tumor tissues, after radiological characterization and surgical biopsy. The ability to characterize tumors comprehensively at the molecular level raises the possibility that diagnosis can be made based on molecular profiling with or without histological examination, rather than solely on histological phenotype. The development of novel genomic and proteomic techniques will foster in the identification of such diagnostic and prognostic molecular markers. We analyzed the global differential gene expression of a GBM cell line HTB15 in comparison to normal human Astrocytes, and established a few canonical pathways that are important in determining the molecular mechanisms of cancer using global gene expression microarray, coupled with the Ingenuity Pathway Analysis ( IPA ®). Overall, we revealed a discrete gene expression profile in the experimental model that resembled progression of GBM cancer. The canonical pathway analysis showed the involvement of genes that differentially expressed in such a disease condition that included Inositol pathway, Polo like kinases, nNOS signaling , and Tetrapyrrole biosynthesis . Our findings established that the gene expression pattern of this dreaded brain cancer will probably help the cancer research community by finding out newer therapeutic strategies to combat this dreaded cancer type that leads to the identification of high-risk population in this category, with almost hundred percent mortality rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app