JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Formation of deletion in Escherichia coli between direct repeats located in the long inverted repeats of a cellular slime mold plasmid: participation of DNA gyrase.

We constructed a recombinant plasmid containing the 2.1 kb HindIII fragment of plasmid pDG1, isolated from the cellular slime mold (Dictyostelium sp. strain GA11), and using pAG60 as cloning vector. We found that deletions of the recombinant plasmid took place frequently in Escherichia coli wild-type cells. However, the deletion was not observed when the plasmid was introduced into a strain that was an isogenic temperature-sensitive mutant of the gyrA gene. These results suggest that E. coli DNA gyrase is involved in the mechanisms of the deletion formation. It was shown that the 1.0 kb deletant derived from the 2.1 kb HindIII insert was produced by elimination of a 1.1 kb region. Sequence analysis of the deletants showed that cutting and rejoining took place between two out of the six nearly perfect direct repeats [21 bp palindromic sequences; AAAAAA(T/C)GGC(G/C)GCC(A/G)TTTTTT], located near the distal ends of the inverted repeats, preserving one copy of the repeats. These sequences consist of local short inverted repeats, where cutting and rejoining occur at one of the two regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app