Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nickel Cobalt Sulfide core/shell structure on 3D Graphene for supercapacitor application.

Scientific Reports 2017 May 19
Three-dimensional (3D) core/shell structure of nickel cobalt sulfide is nano-engineered by using series of hydrothermal steps on a CVD grown graphene for supercapacitor application. This core/shell is composited of NiCo2 S4 nanotube (NCS) as core and Cox Ni(3-x) S2 (CNS) nanosheets as a shell. The as-synthesized composite exhibits excellent electrochemical properties by using the advantage of NCS nanontube core as superhighway for electron and ion transport, and CNS nanosheets shell as high active area pseudocapacitive material. The 3D graphene layer serves as excellent surface area to support 3D NCS/CNS; moreover, it provides excellent electrical conductivity between nickel foam current collector and the 3D NCS/NCS composite. Using these hybrid advantages the as-synthesized graphene/NCS/CNS composite electrode exhibits high areal capacitance of 15.6 F/cm2 at current density of 10 mA/cm2 ; excellent cycling stability of 93% after 5000 of cycles and excellent rate capability of 74.36% as current increase from 10 to 100 mA/cm2 . Moreover, a prototype of asymmetric device fabricated using graphene/NCS/CNS as positive electrode and RGO as negative electrode exhibits high energy density of 23.9 Wh/kg and power density of 2460.6 W/kg at high operating current of 100 mA. Such high performance electrode material may get great application in future energy storage device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app