JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Relationship between the changes in M1 excitability after motor learning and arousal state as assessed by short-latency afferent inhibition.

To examine the factors that influence the inter-individual differences in the changes in primary motor cortex (M1) excitability seen after motor learning, we investigated the relationship between the amplitude of transcranial magnetic stimulation-induced motor evoked potentials (MEP) and short-latency afferent inhibition (SAI) after motor learning, based on the working hypothesis that SAI can be used to evaluate cortical acetylcholine (ACh) activity. To confirm this working hypothesis, we manipulated the arousal state of the subjects using a vigilance task, the outcomes of which might be correlated with cortical ACh activity, and investigated the effects of arousal state on SAI. As a result, we showed that SAI was significantly affected by arousal state. Consequently, we concluded that the subjects' arousal state during motor learning tasks is one of factors to influence on inter-individual differences in the changes in M1 excitability seen after motor learning tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app