Add like
Add dislike
Add to saved papers

Adsorption of p-nitrophenols (PNP) on microalgal biochar: Analysis of high adsorption capacity and mechanism.

Biochars derived from three microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Coelastrum sp. Pte-15) were evaluated for their capacity to adsorb p-nitrophenols (PNP) using raw microalgal biomass and powdered activated carbon (PAC) as the control. The results show that BC-Cha-01 (biochar from Chlorella sp. Cha-01) exhibited a high PNP adsorption capacity of 204.8mgg-1 , which is 250% and 140% higher than that of its raw biomass and PAC, respectively. The adsorption kinetics and equilibrium are well described with pseudo-second-order equation and Freundlich model, respectively. BC-Cha-01 was found to contain higher polarity moieties with more O-containing functional groups than PAC and other microalgae-derived biochars. The strong polarity of binding sites on BC-Cha-01 may be responsible for its superior adsorption capacity. The biochars from Chlorella sp. Cha-01 seem to have the potential to serve as a highly efficient PNP adsorbent for wastewater treatment or emergency water pollution control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app