Add like
Add dislike
Add to saved papers

Identification of the upstream 4-chlorophenol biodegradation pathway using a recombinant monooxygenase from Arthrobacter chlorophenolicus A6.

This study aimed to clarify the initial 4-chlorophenol (4-CP) biodegradation pathway promoted by a two-component flavin-diffusible monooxygenase (TC-FDM) consisting of CphC-I and CphB contained in Arthrobacter chlorophenolicus A6 and the decomposition function of CphC-I. The TC-FDM genes were cloned from A. chlorophenolicus A6, and the corresponding enzymes were overexpressed. Since CphB was expressed in an insoluble form, Fre, a flavin reductase obtained from Escherichia coli, was used. These enzymes were purified using Ni2+ -NTA resin. It was confirmed that TC-FDM catalyzes the oxidation of 4-CP and the sequential conversion of 4-CP to benzoquinone (BQN)→hydroquinone (HQN)→HQL. This indicated that CphC-I exhibits substrate specificity for 4-CP, BQN, and HQN. The activity of CphC-I for 4-CP was 63.22U/mg-protein, and the Michaelis-Menten kinetic parameters were vmax =0.21mM/min, KM =0.19mM, and kcat /KM =0.04mM-1 min-1 . These results would be useful for the development of a novel biochemical treatment technology for 4-CP and phenolic hydrocarbons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app