Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway.

OBJECTIVE: Several clinical studies have shown the beneficial effects of peroxisome proliferator-activated receptor α (PPARα) agonists on diabetic nephropathy. However, the molecular mechanism is not fully understood. Here we show that K-877, a novel selective PPARα modulator, ameliorates nephropathy in db/db mice via inhibition of renal lipid content and oxidative stress.

METHODS AND RESULTS: K-877 (0.5mg/kg/day) was administered to db/db mice for 2 or 12weeks. Short-term treatment did not affect body weight or plasma glucose levels in db/db mice, but attenuated albuminuria, along with improvement of plasma lipid profiles, lipid content including total diacylglycerol (DAG) levels, protein kinase C (PKC) activity, NAD(P)H oxidase-4 expression, and oxidative stress markers, all of which were significantly increased in diabetic kidneys. It increased phosphorylation of 5'-AMP activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), and expression of several genes mediating fatty acid β-oxidation. In addition, long-term treatment ameliorated renal mesangial expansion in db/db mice and improved glycemic control.

CONCLUSIONS: K-877 administration ameliorates diabetic nephropathy, at least in part, via inhibition of renal lipid content and oxidative stress. The underlying mechanism may be mediated by modulating the renal AMPK-ACC pathway, subsequent acceleration of fatty acid β-oxidation and inhibition of fatty acid synthesis, and thus inhibition of the DAG-PKC-NAD(P)H oxidase pathway, in addition to its systemic effect including improvement of the plasma lipid profile and glycemic control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app