Add like
Add dislike
Add to saved papers

Prevention and control of emergent infectious disease with high specific antigen sensor.

This study aims to evaluate the application of a new type of high specificity antigen sensor in detecting the viruses in sudden infectious diseases. Influenza A (H1N1) virus immunosensor was used for the respective determination of the six kinds of antigens of H1N1, H3N2 viral protein, HA protein of H7N9, influenza B virus, adenovirus, and EV71 virus of same dilution degree on the Screen Printed Carbon Electrode (SPCE), so as to test the specificity of the detection method. In addition, various batches of chick embryo allantoic saliva dilution simulation samples were also detected on their recovery (accuracy), repeatability (precision), and stability. The results were as follows: the linear equation was y = 121.33x + 168; the slope of the linear equation was 121.33 nA/HA unit, representing the sensitivity; correlation coefficient was R2 =0.9921 > 0.90. Using Statistical Analysis System (SAS) software, we found that: the W values of seven sets of data after Shapiro-Wilk detection were 0.853, 0.991, 0.901, 0.906, 0.825, 0.974, and 0.992, respectively; P values were 0.247, 0.831, 0.386, 0.405, 0.174, 0.691, and 0.821, respectively, all of which were greater than 0.05, suggesting that normality was met. The results of homogeneity test for variance were as follows: F = 2.44, P = 0.0775 > 0.05, suggesting that homogeneity of variance was met. The parametric test results were as follows: F = 19114.0, P < 0.0001, suggesting that there were obvious differences between testing data of the seven groups. The determination recovery rate of electrochemical immunosensor was 80-110%. Relative Standard Deviation (RSD) values of repeatability (precision) test of H1N1 influenza virus electrochemical immunosensor were 7.74%, 3.54%, and 2.01%, all of which were smaller than 10%. The signal response of H1N1 electrochemical immune biological sensor could still maintain more than 85% of the original signal within 30 days of storage. In conclusion, H1N1 electrochemical immune biosensor has good specificity and the test results are not affected by other viruses of the same type. Besides, it has good accuracy which can realize the accurate determination of A (H1N1) influenza virus in actual detection. Thus, the requirement of precision measurement of A (H1N1) flu virus detection can be met. Therefore, H1N1 electrochemical immune biosensors can be used in actual detection with good stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app