Add like
Add dislike
Add to saved papers

Expression of nm23-H1 and COX-2 in thyroid papillary carcinoma and microcarcinoma.

The expression of non-metastatic expressed/non-metastatic 23 nucleoside diphosphate kinase 1 (nm23-H1) and cyclooxygenase 2 (COX-2) proteins in thyroid carcinoma have been analysed in a number of previous studies, but this requires further study. The current study focused on the expression levels of nm23-H1 and COX-2 in 130 human thyroid papillary carcinoma (PTC) tissues. Of the 130 PTC tissues, 55 were classified as microcarcinoma and may provide information on the development of the specific characteristics of this tumour type. Routine histopathological examination and immunohistochemical detection of nm23-H1 and COX-2 expression was performed on 130 PTC tissues from patients treated in the Clinical Hospital for Tumours (Zagreb, Croatia) between January 2000 and December 2007. The stain intensity of nm23-H1 and COX-2 proteins was compared with the characteristics of the patients and the tumour. The highest overall expression rate of nm23-H1 and COX-2 was 90 and 67.6%, respectively, and the joint expression of these proteins was statistically significant. The median expression level of nm23-H1 was significantly increased in the classical and follicular histological group of the PTC tissues compared with tissues from other histological groups. The median expression level of COX-2 was significantly increased in the follicular histological group, and reduced in the diffuse-sclerosing group of PTC tissues. All the metastatic microcarcinoma tissues had increased expression levels of the two proteins in comparison with microcarcinoma tissues without lymph node metastases; however, this variation was only statistically significant for COX-2 expression levels. Therefore the results of the current study indicate that COX-2 protein levels may be able to differentiate which thyroid papillary microcarcinoma tumours possess metastatic potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app