Add like
Add dislike
Add to saved papers

Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification.

Chemosphere 2017 September
Photocatalytic nanoparticles have been receiving considerable attention for their potential use in many environmental management applications, including urban air quality control. This paper investigates the performance of surface modified WO3/TiO2 composite particles in removing gaseous nitrogen oxides (NOx) under visible light irradiation. The WO3/TiO2 composite particles were synthesized using a modified wet chemical method with different concentrations of NaOH solution used as a surface modification agent for the host TiO2 particles. The NOx removal efficiency of the WO3/TiO2 particles was evaluated using a lab-scale continuous gas flow photo-reactor with a gas contact time of 1 min. Results showed that surface modification using NaOH can enhance the photocatalytic activity of the WO3/TiO2 particles. The NOx removal efficiency of the surface modified WO3/TiO2 was greater than 90%, while that of WO3/TiO2 particles prepared by the conventional wet chemical method was ∼75%. The enhanced removal efficiency might be attributed to the formation of oxygen vacancies on the TiO2 surface, providing sites for WO3 particles to effectively bind with TiO2. However, excess amount of NaOH >3 M deteriorated the photocatalytic performance due to the increased agglomeration of the host TiO2 particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app