Add like
Add dislike
Add to saved papers

Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse.

Neuron 2017 May 18
Synchronous release triggered by Ca(2+) binding to synaptotagmin-1, -2, or -9 is thought to drive fast synaptic transmission, whereas asynchronous release induced by Ca(2+) binding to synaptotagmin-7 is thought to produce delayed synaptic signaling, enabling prolonged synaptic computations. However, it is unknown whether synaptotagmin-7-dependent asynchronous release performs a physiological function at fast synapses lacking a prolonged signaling mode, such as the calyx of Held synapse. Here, we show at the calyx synapse that synaptotagmin-7-dependent asynchronous release indeed does not produce a prolonged synaptic signal after a stimulus train and does not contribute to short-term plasticity, but induces a steady-state, asynchronous postsynaptic current during stimulus trains. This steady-state postsynaptic current does not increase overall synaptic transmission but instead sustains reliable generation of postsynaptic spikes that are precisely time locked to presynaptic spikes. Thus, asynchronous release surprisingly functions, at least at some synapses, to sustain high-fidelity neurotransmission driven by synchronous release during high-frequency stimulus trains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app