Journal Article
Review
Add like
Add dislike
Add to saved papers

Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins.

Neuron 2017 May 18
AMPA receptors (AMPARs) are tetrameric ion channels that together with other ionotropic glutamate receptors (iGluRs), the NMDA and kainate receptors, mediate a majority of excitatory neurotransmission in the central nervous system. Whereas NMDA receptors gate channels with slow kinetics, responsible primarily for generating long-term synaptic potentiation and depression, AMPARs are the main fast transduction elements at synapses and are critical for the expression of plasticity. The kinetic and conductance properties of AMPARs are laid down during their biogenesis and are regulated by post-transcriptional RNA editing, splice variation, post-translational modification, and subunit composition. Furthermore, AMPAR assembly, trafficking, and functional heterogeneity depends on a large repertoire of auxiliary subunits-a feature that is particularly striking for this type of iGluR. Here, we discuss how the subunit structure, stoichiometry, and auxiliary subunits generate a heterogeneous plethora of receptors, each tailored to fulfill a vital role in fast synaptic signaling and plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app