JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Spontaneous Rotation of Nonlinear Pattern Formed by Aqueous Colloidal Suspension between ITO Electrodes during Electrolysis Perpendicular to Gravity.

A colloidal fluid is found to rotate spontaneously during electrolysis when gravity acts perpendicular to the direction of an applied electric field. An aqueous dispersion containing charged colloidal particles is placed inside an O-ring sandwiched between two parallel ITO electrodes. A clip is used to hold the assembly together to prevent the liquid from leaking out. The assembly is positioned such that the electrodes stand vertically, i.e., the electric field during electrolysis points perpendicular to gravity. When a direct-current voltage is applied to initiate the electrolysis of water, a nonlinear colloidal pattern is formed by electroconvective flow. Moreover, the entire fluid rotates spontaneously about the O-ring center with a constant angular velocity. The rotational dynamics are governed by how strong and where the assembly is clipped relative to the gravitational direction. A new phenomenological relationship between the angular velocity, compression vector, and gravity is derived. Coupling of an electrochemical reduction reaction of the ITO film with electroconvection during electrolysis is proposed as a mechanism for the rotational motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app