Add like
Add dislike
Add to saved papers

Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro.

Elevated concentrations of free fatty acids (FFAs), predominantly palmitic, stearic, and oleic acids (PSO), exert detrimental effects on oocyte developmental competence. This study examined the effects of omega-3 alpha-linolenic acid (ALA) during in vitro oocyte maturation (IVM) in the presence of PSO on subsequent embryo development and quality, and the cellular mechanisms that might be involved. Bovine cumulus-oocyte complexes (COCs) were supplemented during IVM with ALA (50 μM), PSO (425 μM), or PSO+ALA. Compared with FFA-free controls (P < 0.05), PSO increased embryo fragmentation and decreased good quality embryos on day 2 postfertilization. Day 7 blastocyst rate was also reduced. Day 8 blastocysts had lower cell counts and higher apoptosis but normal metabolic profile. In the PSO group, cumulus cell (CC) expansion was inhibited with an increased CC apoptosis while COC metabolism was not affected. Mitochondrial inner membrane potential (MMP; JC-1 staining) was reduced in the CCs and oocytes. Heat shock protein 70 (HSP70) but not glucose-regulated protein 78 kDa (GRP78, known as BiP; an endoplasmic reticulum stress marker) was upregulated in the CCs. Higher reactive oxygen species levels (DCHFDA staining) were detected in the oocytes. In contrast, adding ALA in the presence of PSO normalized embryo fragmentation, cleavage, blastocyst rates, and blastocyst quality compared to controls (P > 0.05). Combined treatment with ALA also reduced CC apoptosis, partially recovered CC expansion, abrogated the reduction in MMP in the CCs but not in the oocytes, and reduced BiP and HSP70 expression in CCs, compared with PSO only (P < 0.05). In conclusion, ALA supplementation protected oocyte developmental capacity under lipotoxic conditions mainly by protecting cumulus cell viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app