Add like
Add dislike
Add to saved papers

Using Bayesian modeling in frequentist adaptive enrichment designs.

Biostatistics 2018 January 2
Our increased understanding of the mechanistic heterogeneity of diseases has pushed the development of targeted therapeutics. We do not expect all patients with a given disease to benefit from a targeted drug; only those in the target population. That is, those with sufficient dysregulation in the biomolecular pathway targeted by treatment. However, due to complexity of the pathway, and/or technical issues with our characterizing assay, it is often hard to characterize the target population until well into large-scale clinical trials. This has stimulated the development of adaptive enrichment trials; clinical trials in which the target population is adaptively learned; and enrollment criteria are adaptively updated to reflect this growing understanding. This paper proposes a framework for group-sequential adaptive enrichment trials. Building on the work of Simon & Simon (2013). Adaptive enrichment designs for clinical trials. Biostatistics 14(4), 613-625), it includes a frequentist hypothesis test at the end of the trial. However, it uses Bayesian methods to optimize the decisions required during the trial (regarding how to restrict enrollment) and Bayesian methods to estimate effect size, and characterize the target population at the end of the trial. This joint frequentist/Bayesian design combines the power of Bayesian methods for decision making with the use of a formal hypothesis test at the end of the trial to preserve the studywise probability of a type I error.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app