JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Defining the Role of Estrogen Receptor β in the Regulation of Female Fertility.

Endocrinology 2017 July 2
Estrogens are essential hormones for the regulation of fertility. Cellular responses to estrogens are mediated by estrogen receptor α (ESR1) and estrogen receptor β (ESR2). In mouse and rat models, disruption of Esr1 causes infertility in both males and females. However, the role of ESR2 in reproductive function remains undecided because of a wide variation in phenotypic observations among Esr2-mutant mouse strains. Regulatory pathways independent of ESR2 binding to its cognate DNA response element have also been implicated in ESR2 signaling. To clarify the regulatory roles of ESR2, we generated two mutant rat models: one with a null mutation (exon 3 deletion, Esr2ΔE3) and the other with an inframe deletion selectively disrupting the DNA binding domain (exon 4 deletion, Esr2ΔE4). In both models, we observed that ESR2-mutant males were fertile. ESR2-mutant females exhibited regular estrous cycles and could be inseminated by wild-type (WT) males but did not become pregnant or pseudopregnant. Esr2-mutant ovaries were small and differed from WT ovaries by their absence of corpora lutea, despite the presence of follicles at various stages of development. Esr2ΔE3- and Esr2ΔE4-mutant females exhibited attenuated preovulatory gonadotropin surges and did not ovulate in response to a gonadotropin regimen effective in WT rats. Similarities of reproductive deficits in Esr2ΔE3 and Esr2ΔE4 mutants suggest that DNA binding-dependent transcriptional function of ESR2 is critical for preovulatory follicle maturation and ovulation. Overall, the findings indicate that neuroendocrine and ovarian deficits are linked to infertility observed in Esr2-mutant rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app