Add like
Add dislike
Add to saved papers

Immunofluorescence Imaging Strategy for Evaluation of the Accessibility of DNA 5-Hydroxymethylcytosine in Chromatins.

DNA 5-hydroxymethylcytosine (5hmC) is an important epigenetic modification found in various mammalian cells. Immunofluorescence imaging analysis essentially provides visual pictures for the abundance and distribution of DNA 5hmC in single cells. However, nuclear DNA is usually wrapped around nucleosomes, packaged into chromatins, and further bound with many functional proteins. These physiologically relevant events would generate barriers to the anti-5hmC antibody to selectively recognize 5hmC in DNA. By taking advantage of these naturally generated barriers, here, we present a strategy to evaluate the accessibility of DNA 5hmC in chromatins in situ. We demonstrate that a few of the 5hmC sites in DNA are exposed or accessible to anti-5hmC antibody under nondenaturing conditions, suggesting that these 5hmC sites are not covered by functional DNA-binding proteins in mouse embryonic stem cells. Consistently, these 5hmC foci were distributed in open euchromatin regions as revealed by the 4',6-diamidino-2-phenylindole (DAPI) staining. By overexpressing TET1 catalytic domain (responsible for oxidation 5mC to produce 5hmC) in human MCF-7 cells, we observed a significant increase in accessible 5hmC along with an increase in total 5hmC sites. Collectively, by the use of the nondenaturing immunofluorescence imaging approach, we could obtain a visual landscape on the accessibility of DNA 5hmC in chromatins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app