Add like
Add dislike
Add to saved papers

Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles.

Nickel nanoparticles (NPs) are promising candidates for various applications, including biomedical ones, as they have good magnetic properties as well as high thermal conductivity. We used well-characterized Ni NPs of average Scherrer sizes from 1.31 nm to 22.23 nm and investigated the effects of the primary particle size, size distribution and dielectric environments, and of separately adding non-ionic polyvinylpyrrolidone (PVP), cationic cetyltrimethylammonium bromide (CTAB) and anionic ethylenediaminetetraacetic acid (EDTA) in ethanol, on their stability and agglomeration behaviour using atomic force microscopy (AFM), particle size analysis and zeta potential study through dynamic light scattering (DLS) combined with UV-visible spectroscopy data. The dominant influence of surfactants, additives, particles size and shape on the surface plasmon resonance (SPR) was found. SPR is considerably sensitive to the dielectric environment in addition to size and shape. Moreover, increasing the concentration of PVP led to an enhanced SPR intensity and a shift in its position towards higher wavelength. 1.31 nm NPs with EDTA as an additive yielded the best dispersibility and also showed superparamagnetic behaviour at 300 K, indicating their favourable application potentials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app