JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Analysis of Retinoic Acid-induced Neural Differentiation of Mouse Embryonic Stem Cells in Two and Three-dimensional Embryoid Bodies.

Mouse embryonic stem cells (ESCs) isolated from the inner mass of the blastocyst (typically at day E3.5), can be used as in vitro model system for studying early embryonic development. In the absence of leukemia inhibitory factor (LIF), ESCs differentiate by default into neural precursor cells. They can be amassed into a three dimensional (3D) spherical aggregate termed embryoid body (EB) due to its similarity to the early stage embryo. EBs can be seeded on fibronectin-coated coverslips, where they expand by growing two dimensional (2D) extensions, or implanted in 3D collagen matrices where they continue growing as spheroids, and differentiate into the three germ layers: endodermal, mesodermal, and ectodermal. The 3D collagen culture mimics the in vivo environment more closely than the 2D EBs. The 2D EB culture facilitates analysis by immunofluorescence and immunoblotting to track differentiation. We have developed a two-step neural differentiation protocol. In the first step, EBs are generated by the hanging-drop technique, and, simultaneously, are induced to differentiate by exposure to retinoic acid (RA). In the second step, neural differentiation proceeds in a 2D or 3D format in the absence of RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app