JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Invasive Behavior of Human Breast Cancer Cells in Embryonic Zebrafish.

In many cases, cancer patients do not die of a primary tumor, but rather because of metastasis. Although numerous rodent models are available for studying cancer metastasis in vivo, other efficient, reliable, low-cost models are needed to quickly access the potential effects of (epi)genetic changes or pharmacological compounds. As such, we illustrate and explain the feasibility of xenograft models using human breast cancer cells injected into zebrafish embryos to support this goal. Under the microscope, fluorescent proteins or chemically labeled human breast cancer cells are transplanted into transgenic zebrafish embryos, Tg (fli:EGFP), at the perivitelline space or duct of Cuvier (Doc) 48 h after fertilization. Shortly afterwards, the temporal-spatial process of cancer cell invasion, dissemination, and metastasis in the living fish body is visualized under a fluorescent microscope. The models using different injection sites, i.e., perivitelline space or Doc are complementary to one another, reflecting the early stage (intravasation step) and late stage (extravasation step) of the multistep metastatic cascade of events. Moreover, peritumoral and intratumoral angiogenesis can be observed with the injection into the perivitelline space. The entire experimental period is no more than 8 days. These two models combine cell labeling, micro-transplantation, and fluorescence imaging techniques, enabling the rapid evaluation of cancer metastasis in response to genetic and pharmacological manipulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app