JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Transient Middle Cerebral Artery Occlusion Model of Neonatal Stroke in P10 Rats.

A number of animal models have been used to study hypoxic-ischemic injury, traumatic injury, global hypoxia, or permanent ischemia in both the immature and mature brain. Stroke occurs commonly in the perinatal period in humans, and transient ischemia-reperfusion is the most common form of stroke in neonates. The reperfusion phase is a critical component of injury progression, which occurs over a period of days to weeks, and of the endogenous response to injury. This postnatal day 10 (p10) rat model of transient middle cerebral artery occlusion (tMCAO) creates a unilateral, non-hemorrhagic focal ischemia-reperfusion injury that can be utilized to study the mechanisms of focal injury and repair in the full-term-equivalent brain. The injury pattern that is produced by tMCAO is consistent and highly reproducible and can be confirmed with MRI or histological analyses. The severity of injury can be manipulated through changes in occlusion time and other methods that will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app