Add like
Add dislike
Add to saved papers

Controllable design of tunable nanostructures inside metal-organic frameworks.

The controllable encapsulation of nanoentities (such as metal nanoparticles, quantum dots, polyoxometalates, organic and metallorganic molecules, biomacromolecules, and metal-organic polyhedra) into metal-organic frameworks (MOFs) to form composite materials has attracted significant research interest in a variety of fields. These composite materials not only exhibit the properties of both the nanoentities and the MOFs but also display unique and synergistic functionalities. Tuning the sizes, compositions, and shapes of nanoentities encapsulated in MOFs enables the final composites to exhibit superior performance to those of the separate constituents for various applications. In this tutorial review article, we summarized the state-of-the-art development of MOFs containing encapsulated tunable nanoentities, with special emphasis on the preparation and synergistic properties of these composites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app