Add like
Add dislike
Add to saved papers

Colorimetric and electrochemical quantification of global DNA methylation using a methyl cytosine-specific antibody.

Analyst 2017 May 31
We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/H2 O2 which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex. As TMB(ox) is electroactive, it also produces detectable amperometric current at +150 mV versus a Ag pseudo-reference electrode (electrochemical detection). The assay could successfully differentiate 5-aza-2'-deoxycytidine drug-treated and untreated Jurkat DNA samples. It showed good reproducibility (relative standard deviation (% RSD) = <5%, for n = 3) with fairly good sensitivity (as low as 5% difference in methylation levels) and specificity while analysing various levels of global DNA methylation in synthetic samples and cell lines. The method has also been tested for analysing the methylation level in fresh tissue samples collected from eight patients with oesophageal squamous cell carcinoma. We believe that this assay could be potentially useful as a low-cost alternative for genome-wide DNA methylation analysis in point-of-care applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app