Add like
Add dislike
Add to saved papers

Facile preparation of protonated hexaniobate nanosheets and its enhanced photocatalytic activity.

Nanotechnology 2017 May 19
Exfoliated hexaniobate nanosheets E-H2K2Nb6O17-x (E-HKNO) with broad light absorption (up to 850 nm) and high adsorption properties were prepared via ion exchange and transient annealing processes with micron-size K4Nb6O17 powders as the precursor. The as-prepared E-HKNO nanosheets show excellent visible light photodegradation performances when compared to degussa P25, which was evaluated in terms of degradation of Rhodamine B (Rh B). High adsorption and broad light absorption characteristics could be attributed to the exfoliation behavior and the reduction of surface Nb(5+) to Nb(4+), which was confirmed by x-ray photoelectron spectroscopy (XPS) and Raman spectra. From the Mott-Schottky analysis, the E-HKNO is an n-type semiconductor and has a higher flat band voltage (-0.46 V versus RHE at pH = 7), compared with K4Nb6O17. In addition, the electrochemical impedance spectroscopy (EIS) indicates that the E-HKNO nanosheets have an increased semiconductor-electrolyte charge transfer resistance, which is not conducive to the separation of photogenerated carriers (e(-)-h(+)). Accordingly, a small amount of holes scavenger (EDTA) was added to improve the photodegradation performance of the E-HKNO, since the holes scavenger can inhibit the recombination of the photogenerated carriers. This work provides not only a facile method for the preparation of an efficient E-HKNO nanosheets photocatalyst, but also new insights for further enhancing the photodegradation performance by adding trace scavenger.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app