Add like
Add dislike
Add to saved papers

A diffusion-weighted imaging informed continuum model of the rabbit triceps surae complex.

The NZ white rabbit is the animal of choice for much experimental work due to its muscular frame and similar response to human diseases, and is one of the few mammals that have had their genome sequenced. However, continuum-level computational models of rabbit muscle detailing fibre architecture are limited in the literature, especially the triceps surae complex (gastrocnemius, plantaris and soleus), which has similar biomechanics and translatable findings to the human. This study presents a geometrical model of the rabbit triceps surae informed with diffusion-weighted imaging (DWI)-based fibres. Passive rabbit-specific material properties are estimated using known muscle deformation inferred from magnetic resonance imaging data and dorsiflexion force measured with a custom-built rabbit rig and transducer. Muscle shape prediction is evaluated against a second rabbit. This study revealed that the triceps surae steady-state force post-rigor is close to post-mortem for small deformations but increases by a fixed ratio as the deformation increases and can be used to evaluate the passive behaviour of muscle. DWI fibre orientation significantly influences shape and mechanics during simulated computational muscle contraction. The presented triceps surae force and material properties may be used to inform the constitutive behaviour of continuum rabbit muscle models used to investigate pathology and musculotendon treatments that may be translated to the human condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app