Add like
Add dislike
Add to saved papers

Chronic eccentric arm cycling improves maximum upper-body strength and power.

INTRODUCTION: Eccentric leg cycling (cycle ergometry adapted to impose muscle lengthening contractions) offers an effective exercise for restoring lower-body muscular function, maintaining health, and improving performance in clinical and athletic populations.

PURPOSE: We extended this model to the upper body and evaluated the effectiveness of a 7-week eccentric arm cycling (ECCarm ) intervention to improve upper-body muscular function. We also explored whether ECCarm would alter arterial function.

METHODS: Participants performed ECCarm (n = 9) or concentric arm cycling (CONarm ; n = 8) 3×/week while training intensity increased (5-20 min, 60-70% upper-body peak heart rate). Maximum elbow extensor strength, upper-body concentric power, and peripheral and central arterial stiffness were assessed before and after training.

RESULTS: During training, heart rates and perceived exertion did not differ between groups (~68% upper-body peak heart rate, ~12 Borg units, both P > 0.05), whereas power during ECCarm was ~2× that for CONarm (122 ± 43 vs. 59 ± 20 W, P < 0.01). Muscle soreness for ECCarm was greater than CONarm (P = 0.02), however, soreness was minimal for both groups (<0.50 cm). Following training, ECCarm exhibited greater changes in elbow extensor strength (16 ± 10 vs. 1 ± 9%, P = 0.01) and upper-body power (6 ± 8 vs. -3 ± 7%, P < 0.01) compared to CONarm . Peripheral and central arterial stiffness did not change for either group (both P > 0.05).

CONCLUSION: Upper-body eccentric exercise improved dynamic muscular function while training at low exertion levels. Results occurred with minimal soreness and without compromising arterial function. ECCarm findings parallel eccentric leg cycling findings and indicate that eccentric cycle ergometry offers a robust model for enhancing upper-body muscular function. ECCarm could have applications in rehabilitation and sport training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app