Add like
Add dislike
Add to saved papers

Increasing copper alters cellular elemental composition (Mo and P) of marine diatom.

The elemental composition (surface adsorbed and internalized fraction of Cu, Mo and P) in marine phytoplankton was first examined in cultures of the diatom Phaeodactylum tricornutum which were exposed to various levels of Cu concentrations ranging from 0.25 to 16 μmol/L with equivalent free [Cu2+ ] concentrations of 0.4-26 nmol/L. We observed an acceleration of algal growth rates (20-40%) with increasing ambient Cu levels, as well as slightly increased levels of internalized Cu in cells (2-13 × 10-18  mol/cell) although cellular Cu mostly accumulated onto the cell surface (>50% of the total: intracellular + surface adsorbed). In particular, we documented for the first time that the elemental composition (Mo and P) in algal cells varies dynamically in response to increased Cu levels: (1) Cellular P, predominantly in the intracellular compartment (>95%), shows with a net consumption as indicated by a gradual decrease with increasing [Cu2+ ] (120→50 × 10-15  mol P/cell) probably due to the fact that P, a backbone bioelement, is largely required in forming biological compartments such as cell membranes; and (2) cellular Mo, predominantly encountered in the intracellular compartment, showed up to tenfold increase in concentration in the cultures exposed to Cu, with a peak accumulation of 1.1 × 10-18  mol Mo/cell occurring in the culture exposed to [Cu2+ ] at 3.7 nmol/L. Such a net cellular Mo accumulation suggests that Mo might be specifically required in biological processes, probably playing a counteracting role against Cu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app