Add like
Add dislike
Add to saved papers

Magnetic Susceptibility Changes in the Basal Ganglia and Brain Stem of Patients with Wilson's Disease: Evaluation with Quantitative Susceptibility Mapping.

OBJECTIVES: Wilson's disease (WD) is characterized with the accumulation of copper in the liver and brain. The objective of this study is to quantitatively measure the susceptibility changes of basal ganglia and brain stem of pediatric patients with neurological WD using quantitative susceptibility mapping (QSM) in comparison to healthy controls.

METHODS: Eleven patients with neurological WD (mean age 15 ± 3.3 years, range 10-22 years) and 14 agematched controls were prospectively recruited. Both groups were scanned on a 1.5 Tesla clinical scanner. In addition to T1 - and T2 -weighted MR images, a 3D multi-echo spoiled gradient echo (GRE) sequence was acquired and QSM images were derived offline. The quantitative measurement of susceptibility of corpus striatum, thalamus of each hemisphere, midbrain, and pons were assessed with the region of interest analysis on the QSM images. The susceptibility values for the patient and control groups were compared using twosample t-test.

RESULTS: One patient with WD had T1 shortening in the bilateral globus pallidus. Another one had hyperintensity in the bilateral putamen, caudate nuclei, and substantia nigra on T2 -weighted images. The rest of the patients with WD and all subjects of the control group had no signal abnormalities on conventional MR images. The susceptibility measures of right side of globus pallidus, putamen, thalamus, midbrain, and entire pons were significantly different in patients compared to controls (P < 0.05).

CONCLUSION: QSM method exhibits increased susceptibility differences of basal ganglia and brain stem in patients with WD that have neurologic impairment even if no signal alteration is detected on T1 - and T2 -weighted MR images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app