Add like
Add dislike
Add to saved papers

BMX/Etk promotes cell proliferation and tumorigenicity of cervical cancer cells through PI3K/AKT/mTOR and STAT3 pathways.

Oncotarget 2017 July 26
Bone marrow X-linked kinase (BMX, also known as Etk) has been reported to be involved in cell proliferation, differentiation, apoptosis, migration and invasion in several types of tumors, but its role in cervical carcinoma remains poorly understood. In this study, we showed that BMX expression exhibits a gradually increasing trend from normal cervical tissue to cervical cancer in situ and then to invasive cervical cancer tissue. Through BMX-IN-1, a potent and irreversible BMX kinase inhibitor, inhibited the expression of BMX, the cell proliferation was significantly decreased. Knockdown of BMX in HeLa and SiHa cervical cancer cell lines using two different silencing technologies, TALEN and shRNA, inhibited cell growth in vitro and suppressed xenograft tumor formation in vivo, whereas overexpression of BMX in the cell line C-33A significantly increased cell proliferation. Furthermore, a mechanism study showed that silencing BMX blocked cell cycle transit from G0/G1 to S or G2/M phase, and knockdown of BMX inhibited the expression of p-AKT and p-STAT3. These results suggested that BMX can promote cell proliferation through PI3K/AKT/mTOR and STAT3 signaling pathways in cervical cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app