Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death.

Cell Reports 2017 May 17
Chlamydia trachomatis is a human pathogen associated with significant morbidity worldwide. As obligate intracellular parasites, chlamydiae must survive within eukaryotic cells for sufficient time to complete their developmental cycle. To promote host cell survival, chlamydiae express poorly understood anti-apoptotic factors. Using recently developed genetic tools, we show that three inclusion membrane proteins (Incs) out of eleven examined are required for inclusion membrane stability and avoidance of host cell death pathways. In the absence of specific Incs, premature inclusion lysis results in recognition by autophagolysosomes, activation of intrinsic apoptosis, and premature termination of the chlamydial developmental cycle. Inhibition of autophagy or knockdown of STING prevented host cell death and activation of intrinsic apoptosis. Significantly, these findings emphasize the importance of Incs in the establishment of a replicative compartment that sequesters the pathogen from host surveillance systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app