Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Defect-Mediated Electron-Hole Separation in One-Unit-Cell ZnIn 2 S 4 Layers for Boosted Solar-Driven CO 2 Reduction.

The effect of defects on electron-hole separation is not always clear and is sometimes contradictory. Herein, we initially built clear models of two-dimensional atomic layers with tunable defect concentrations, and hence directly disclose the defect type and distribution at atomic level. As a prototype, defective one-unit-cell ZnIn2 S4 atomic layers are successfully synthesized for the first time. Aberration-corrected scanning transmission electron microscopy directly manifests their distinct zinc vacancy concentrations, confirmed by positron annihilation spectrometry and electron spin resonance analysis. Density-functional calculations reveal that the presence of zinc vacancies ensures higher charge density and efficient carrier transport, verified by ultrafast photogenerated electron transfer time of ∼15 ps from the conduction band of ZnIn2 S4 to the trap states. Ultrafast transient absorption spectroscopy manifests the higher zinc vacancy concentration that allows for ∼1.7-fold increase in average recovery lifetime, confirmed by surface photovoltage spectroscopy and PL spectroscopy analysis, which ensures promoted carrier separation rates. As a result, the one-unit-cell ZnIn2 S4 layers with rich zinc vacancies exhibit a carbon monoxide formation rate of 33.2 μmol g-1 h-1 , roughly 3.6 times higher than that of the one-unit-cell ZnIn2 S4 layers with poor zinc vacancies, while the former's photocatalytic activity shows negligible loss after 24 h photocatalysis. This present work uncovers the role of defects in affecting electron-hole separation at atomic level, opening new opportunities for achieving highly efficient solar CO2 reduction performances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app