JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti 3 C 2 T x Nanosheets for Electrocatalytic Oxygen Evolution.

ACS Nano 2017 June 28
Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been recently regarded as the model electrocatalysts due to their porous structure, fast mass and ion transfer through the thickness, and large portion of exposed active metal centers. Combining them with electrically conductive 2D nanosheets is anticipated to achieve further improved performance in electrocatalysis. In this work, we in situ hybridized 2D cobalt 1,4-benzenedicarboxylate (CoBDC) with Ti3 C2 Tx (the MXene phase) nanosheets via an interdiffusion reaction-assisted process. The resulting hybrid material was applied in the oxygen evolution reaction and achieved a current density of 10 mA cm-2 at a potential of 1.64 V vs reversible hydrogen electrode and a Tafel slope of 48.2 mV dec-1 in 0.1 M KOH. These results outperform those obtained by the standard IrO2 -based catalyst and are comparable with or even better than those achieved by the previously reported state-of-the-art transition-metal-based catalysts. While the CoBDC layer provided the highly porous structure and large active surface area, the electrically conductive and hydrophilic Ti3 C2 Tx nanosheets enabled the rapid charge and ion transfer across the well-defined Ti3 C2 Tx -CoBDC interface and facilitated the access of aqueous electrolyte to the catalytically active CoBDC surfaces. The hybrid nanosheets were further fabricated into an air cathode for a rechargeable zinc-air battery, which was successfully used to power a light-emitting diode. We believe that the in situ hybridization of MXenes and 2D MOFs with interface control will provide more opportunities for their use in energy-based applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app