Add like
Add dislike
Add to saved papers

Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy.

Understanding light-triggered charge carrier dynamics near photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices. Visualization of such dynamics information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics on material surfaces. Time-resolved snapshots indicate that the dynamics of charge carriers generated by electron impact in the electron-photon dynamical probing regime is highly sensitive to the thickness of the absorber layer, as demonstrated using CdSe films of different thicknesses as a model system. This finding not only provides the foundation for potential applications of S-UEM to a wide range of devices in the fields of chemical and materials research, but also has impact on the use and interpretation of electron beam-induced current for optimization of photoactive materials in these devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app