Add like
Add dislike
Add to saved papers

Conformational behavior and stacking interactions of contorted polycyclic aromatics.

We present a systematic computational analysis of the conformations and stacking interactions of a set of 18 saddle-shaped, contorted polycyclic aromatic compounds at the B97-D3M(BJ)/TZV(2d,2p)//B97-D/TZV(2d,2p) level of theory. These doubly-concave systems offer a means of tuning the strength of stacking interactions through variations in molecular curvature, and understanding the intermolecular non-covalent interactions exhibited by these systems will aid the design of contorted polycyclic systems with precisely defined packing in the solid state. Computations reveal wide variations in both the nature of the low-lying conformations and the stacking affinities of these systems. In particular, the introduction of both thiophene rings around the periphery of these systems and the incorporation of B and N atoms into the coronene core can greatly enhance their tendency to form strongly stacked dimers. Overall, these data provide a reminder that curvature does not always lead to stronger stacking interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app