Add like
Add dislike
Add to saved papers

Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate.

Marine Drugs 2017 May 18
We describe a novel regeneratively-active barrier membrane which consists of a durable electrospun poly(ε-caprolactone) (PCL) net covered with a morphogenetically-active biohybrid material composed of collagen and inorganic polyphosphate (polyP). The patch-like fibrous collagen structures are decorated with small amorphous polyP nanoparticles (50 nm) formed by precipitation of this energy-rich and enzyme-degradable (alkaline phosphatase) polymer in the presence of calcium ions. The fabricated PCL-polyP/collagen hybrid mats are characterized by advantageous biomechanical properties, such as enhanced flexibility and stretchability with almost unaltered tensile strength of the PCL net. The polyP/collagen material promotes the attachment and increases the viability/metabolic activity of human mesenchymal stem cells compared to cells grown on non-coated mats. The gene expression studies revealed that cells, growing onto polyP/collagen coated mats show a significantly (two-fold) higher upregulation of the steady-state-expression of the angiopoietin-2 gene used as an early marker for wound healing than cells cultivated onto non-coated mats. Based on our results we propose that amorphous polyP, stabilized onto a collagen matrix, might be a promising component of functionally-active barrier membranes for guided tissue regeneration in medicine and dentistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app