Add like
Add dislike
Add to saved papers

A Single-Molecular AND Gate Operated with Two Orthogonal Switching Mechanisms.

Single-molecular electronics is a potential solution to nanoscale electronic devices. While simple functional single-molecule devices such as diodes, switches, and wires are well studied, complex single-molecular systems with multiple functional units are rarely investigated. Here, a single-molecule AND logic gate is constructed from a proton-switchable edge-on gated pyridinoparacyclophane unit with a light-switchable diarylethene unit. The AND gate can be controlled orthogonally by light and protonation and produce desired electrical output at room temperature. The AND gate shows high conductivity when treated with UV light and in the neutral state, and low conductivity when treated either with visible light or acid. A conductance difference of 7.3 is observed for the switching from the highest conducting state to second-highest conducting state and a conductance ratio of 94 is observed between the most and least conducting states. The orthogonality of the two stimuli is further demonstrated by UV-vis, NMR, and density function theory calculations. This is a demonstration of concept of constructing a complex single-molecule electronic device from two coupled functional units.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app