Add like
Add dislike
Add to saved papers

Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2.

This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app