Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies.

The aim of this study was to develop a computational framework to compare the impact of standard ablation concepts on the mechanical performance of the atria, since different line combinations cannot be applied in practice to the same patient. For this purpuse, we coupled electro-mechano-hemodynamic mathematical models based on biophysical principles and simulate the contractile performance of the atria. We computed systolic pressures and volumes in two patient-specific atrial geometries (one of normal size and one hypertrophied) with various ablation concepts. We found that our computational model is able to detect the differences in the left atrial contractility and ejection fraction for various electrical activation sequences resulting from different ablation line combinations. We show that multiphysics modeling has the potential to quantify the hemodynamic performance of left atria for different ablation lines, which could be used as additional pre-operative clinical information for the choice of the ablation concept in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app