Add like
Add dislike
Add to saved papers

Long non-coding RNA H19 induces hippocampal neuronal apoptosis via Wnt signaling in a streptozotocin-induced rat model of diabetes mellitus.

Oncotarget 2017 April 28
Defects in hippocampal synaptic plasticity and disorders of memory and learning are the central nervous system complications of diabetes mellitus (DM). Here, we used a streptozotocin-induced rat DM model to investigate the effects of long non-coding RNA H19 (lncRNA H19) on learning and memory and apoptosis of hippocampal neurons, and the involvement of the Wnt signaling. Our data demonstrate that lncRNA H19 is highly expressed in rats with DM. Over-expression of lncRNA H19 increased positioning navigation latency in DM rats and decreased duration of space exploration. lncRNA H19 over-expression also increased hippocampal neuronal apoptosis and expression of Wnt3, β-catenin, TCF-1, Bax, caspase-8 and caspase-3. By contrast, expression of GSK-3β and Bcl-2 was suppressed in DM rats over-expressing lncRNA H19. These results suggest that lncRNA H19 induces hippocampal neuronal apoptosis via Wnt signaling, and that inhibition of lncRNA H19 may serve as a promising novel target for the treatment of cognitive decline in patients with DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app