Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling.

The normal myoepithelium has a tumor-suppressing nature and inhibits the progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC). Conversely, a growing number of studies have shown that tumor-associated myoepithelial cells have a tumor-promoting effect. Moreover, the exact role of tumor-associated myoepithelial cells in the DCIS-to-IDC development remains undefined. To address this, we explored the role of tumor-associated myoepithelial cells in the DCIS-to-IDC progression. We developed a direct coculture system to study the cell-cell interactions between DCIS cells and tumor-associated myoepithelial cells. Coculture studies indicated that tumor-associated myoepithelial cells promoted the invasive progression of a DCIS cell model in vitro , and mechanistic studies revealed that the interaction with DCIS cells stimulated tumor-associated myoepithelial cells to secrete TGFβ1, which subsequently contributed to activating the TGFβ/Smads pathway in DCIS cells. We noted that activation of the TGFβ signaling pathway promoted the epithelial-mesenchymal transition, basal-like phenotypes, stemness, and invasiveness of DCIS cells. Importantly, xenograft studies further demonstrated that tumor-associated myoepithelial cells enhanced the DCIS-to-IDC progression in vivo Furthermore, we found that TGFβ-mediated induction of oncogenic miR-10b-5p expression and down-regulation of RB1CC1 , a miR-10b-5p-targeted tumor-suppressor gene, contributed to the invasive progression of DCIS. Our findings provide the first experimental evidence to directly support the paradigm that altered DCIS-associated myoepithelial cells promote the invasive progression of DCIS into IDC via TGFβ signaling activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app