Add like
Add dislike
Add to saved papers

A sliding hip screw augmented with 2 screws is biomechanically similar to an inverted triad of cannulated screws in repair of a Pauwels type-III fracture.

Injury 2017 August
OBJECTIVE: Pauwels III femoral neck fractures are highly unstable. These fractures are commonly treated with three cannulated screws or sliding hip screw (SHS) implants, however high rates of non-union persist. A hybrid SHS construct has recently been proposed. The objective of the study was to compare this construct to the familiar inverted triad of cannulated screws and to a single SHS.

METHODS: Fourth generation biomechanical femur analogs were used to create a highly repeatable injury model. The hybrid SHS construct contained a SHS with two superior cannulated screws in an inverted triangle configuration. Eight samples for each construct were biomechanically evaluated and the results compared using ANOVA (p<0.05).

RESULTS: The cannulated triad and hybrid SHS provided similar stiffness and fracture gap motion. The single SHS exhibited significantly lower stiffness and larger fracture plane diastasis than either the inverted triangle of cannulated screws or hybrid SHS (p<0.05). None of the constructs exhibited catastrophic failure during cyclic loading nor under loading up to 2.5 times body weight.

CONCLUSIONS: The single SHS provided the least stable fracture fixation, while the inverted triad and hybrid SHS constructs were mechanically similar. The fracture repair simulated here illustrates how these repairs have the potential to return near pre-fracture strength in ideal conditions with young, healthy bone. However; in clinical situations where comminution impairs load transfer through the cortices the hybrid SHS may be the most favorable option.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app