Add like
Add dislike
Add to saved papers

Repeated manganese administration produced abnormal expression of circadian clock genes in the hypothalamus and liver of rats.

Neurotoxicology 2017 September
Manganese (Mn) neurotoxicity displays non-motor dysfunction and motor impairment like Parkinson's disease (PD), and is called as Manganism. Circadian disruption is a non-motor symptom found in PD and Manganism. Clock genes are essential to drive and maintain circadian rhythm, but little is known about Mn exposure on circadian clock genes expression. Both the brain and liver are targets of Mn, we hypothesize that repeated Mn administration could affect clock gene expression in the hypothalamus and livers. Male Sprague-Dawley rats were intraperitoneally injected Mn2+ 1mg and 5mg/kg as MnCl2 ·4H2 O, every other day for 30 days. Mn neurotoxicity was evaluated by behavioral changes and loss of dopaminergic neurons via immunohistochemistry. The expression of circadian clock genes was determined via RT-qPCR. Repeated Mn administration dose-dependently retarded the body weight gain, impaired the rotarod activity, decreased the number of dopaminergic neurons in the substantia nigra, and activated microglia in the brain. Expressions of circadian core genes brain and muscle Arnt-like protein-1 (Bmal1), locomotor output cycles kaput (Clock) and neuronal PAS domain protein2 (Npas2), and clock feedback gene cryptochrome1 (Cry1), period genes (Per1 and Per2) in the hypothalamus and liver were decreased after exposure to Mn in a dose-dependent manner, while expressions of clock-targeted genes nuclear receptor Rev-Erbα (Nr1d1) and D-box-binding protein (Dbp) were increased. Peripheral clock in the liver appears to be more susceptible to Mn-induced abnormal clock gene expression. In summary, repeated Mn administration produced dysregulation of circadian clock gene expressions in both the brain and liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app