Add like
Add dislike
Add to saved papers

Exploiting Salt Induced Microphase Separation To Form Soy Protein Microcapsules or Microgels in Aqueous Solution.

Biomacromolecules 2017 July 11
Self-assembly of native glycinin at room temperature was investigated as a function of the pH and the NaCl concentration. Microphase separation leading to the formation of dense protein microdomains was observed by confocal laser scanning microscopy. Depending on the conditions, the microdomains coalesced into a continuous protein rich phase or associated into large clusters. Addition of β-conglycinin inhibited phase separation and reduced the pH range in which it occurred. Microdomains of glycinin that were formed in the presence of 0.1 M NaCl transformed into hollow stable cross-linked microcapsules when heated above 60 °C with diameters between 3 and 30 μm depending on the protein concentration and a shell thickness between 1.0 and 1.4 μm. The microcapsules were stable to dilution in salt free water, whereas microdomains formed at room temperature redispersed. Microdomains formed in mixtures with β-conglycinin did not transform into microcapsules, but they became stable cross-linked homogeneous microgels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app