Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.

Nano Letters 2017 June 15
Nanocrystal superlattices are typically fabricated by either solvent evaporation or destabilization methods that require long time periods to generate highly ordered structures. In this paper, we report for the first time the use of electric fields to reversibly drive nanocrystal assembly into superlattices without changing solvent volume or composition, and show that this method only takes 20 min to produce polyhedral colloidal crystals, which would otherwise need days or weeks. This method offers a way to control the lattice constants and degree of preferential orientation for superlattices and can suppress the uniaxial superlattice contraction associated with solvent evaporation. In situ small-angle X-ray scattering experiments indicated that nanocrystal superlattices were formed while solvated, not during drying.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app