JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lithium Batteries with Nearly Maximum Metal Storage.

ACS Nano 2017 June 28
The drive for significant advancement in battery capacity and energy density inspired a revisit to the use of Li metal anodes. We report the use of a seamless graphene-carbon nanotube (GCNT) electrode to reversibly store Li metal with complete dendrite formation suppression. The GCNT-Li capacity of 3351 mAh g-1 GCNT-Li approaches that of bare Li metal (3861 mAh g-1 Li ), indicating the low contributing mass of GCNT, while yielding a practical areal capacity up to 4 mAh cm-2 and cycle stability. A full battery based on GCNT-Li/sulfurized carbon (SC) is demonstrated with high energy density (752 Wh kg-1 total electrodes, where total electrodes = GCNT-Li + SC + binder), high areal capacity (2 mAh cm-2 ), and cyclability (80% retention at >500 cycles) and is free of Li polysulfides and dendrites that would cause severe capacity fade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app