JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exploring High-Performance n-Type Thermoelectric Composites Using Amino-Substituted Rylene Dimides and Carbon Nanotubes.

ACS Nano 2017 June 28
Taking advantage of the high electrical conductivity of a single-walled carbon nanotube (SWCNT) and the large Seebeck coefficient of rylene diimide, a convenient strategy is proposed to achieve high-performance n-type thermoelectric (TE) composites containing a SWCNT and amino-substituted perylene diimide (PDINE) or naphthalene diimide (NDINE). The obtained n-type composites display greatly enhanced TE performance with maximum power factors of 112 ± 8 (PDINE/SWCNT) and 135 ± 14 (NDINE/SWCNT) μW m-1 K-2 . A short doping time of 0.5 h can ensure high TE performance. The corresponding TE module consisting of five p-n junctions reaches a large output power of 3.3 μW under a 50 °C temperature gradient. In addition, the n-type composites exhibit high air stability and excellent thermal stability. This design strategy benefits the future fabricating of high-performance n-type TE materials and devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app