Add like
Add dislike
Add to saved papers

Coordination polymer nanocapsules prepared using metal-organic framework templates for pH-responsive drug delivery.

Nanotechnology 2017 July 8
A facile, efficient, and versatile approach is presented to synthesize pH-responsive nanocapsules (∼120 nm) by combining the advantages of metal-organic frameworks (MOFs) and metal-organic thin films. ZIF-8 nanoparticles are used as templates on which a thin film coating of iron(III)-catechol complexes is derived from the coordination between dopamine-modified alginate (AlgDA) and iron(III) ions. After the template removal, nanocapsules with a pH-responsive wall are obtained. Doxorubicin (Dox), a typical anticancer drug, is first immobilized in ZIF-8 frameworks through coprecipitation and then encapsulated in nanocapsules after the removal of ZIF-8. The structure of the iron(III)-catechol complex varies with pH value, thus conferring the Dox@Nanocapsules with tailored release behavior in vitro. Cytotoxicity tests illustrate the highly effective cytotoxicity of Dox@Nanocapsules towards cancer cells. This study provides a new method for preparing smart nanocapsules and offers more opportunities for the controlled delivery of drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app