JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Impact of Steroidal Glycoalkaloids on the Physiology of Phytophthora infestans, the Causative Agent of Potato Late Blight.

Steroidal glycoalkaloids (SGAs) are plant secondary metabolites known to be toxic to animals and humans and that have putative roles in defense against pests. The proposed mechanisms of SGA toxicity are sterol-mediated disruption of membranes and inhibition of cholinesterase activity in neurons. It has been suggested that phytopathogenic microorganisms can overcome SGA toxicity by enzymatic deglycosylation of SGAs. Here, we have explored SGA-mediated toxicity toward the invasive oomycete Phytophthora infestans, the causative agent of the late blight disease in potato and tomato, as well as the potential for SGA deglycosylation by this species. Our growth studies indicate that solanidine, the nonglycosylated precursor of the potato SGAs α-chaconine and α-solanine, has a greater physiological impact than its glycosylated forms. All of these compounds were incorporated into the mycelium, but only solanidine could strongly inhibit the growth of P. infestans in liquid culture. Genes encoding several glycoside hydrolases with potential activity on SGAs were identified in the genome of P. infestans and were shown to be expressed. However, we found no indication that deglycosylation of SGAs takes place. We present additional evidence for apparent host-specific adaptation to potato SGAs and assess all results in terms of future pathogen management strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app